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ABSTRACT 

The repair-misrepair model of cell survival is formulated mathematically 

as a Markov process. The nucleus of a cell is described by the status of the 

lesions that resulted from exposure to radiation. At any time each of these 

lesions is either unrepaired, misrepaired, or eurepaired. A system of coupled 

differential equations for the probabilities of zero, one, two, ... unrepaired 

lesions is derived. The probability of survival of a cell is the probability 

of zero unrepaired or misrepaired lesions. Solutions for the probability of 

survival are obtained for four cases: three for lesions associated with the 

tracks of ionizing particles through the nucleus and one for lesions resulting 

from X rays and not distributed along tracks. These solutions reduce to simple 

forms for various limiting cases of the parameters. These limiting solutions 

bound the range of the probability of survival. 

It is shown that when the average number of initial lesions per track is 

varied while the average number of lesions for the nucleus as a whole is held 

constant, the cells with a higher number of lesions per track (corresponding 

to higher LET) have a higher probability of survival than those with a lower 

number. This shows the effect of larger bunches of lesions on fewer tracks. 

It is known experimentally that when dose is held constant, a higher proba

bility of survival corresponds to lower LET. These contrasting properties 

imply that the number of lesions per track must increase much less slowly with 

LET than in direct proportion, and may provide a means of testing the model. 
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I. INTRODUCTION 

"The Repair-Misrepair Model of Cell Survival'' by Tobias, Blakely, Ngo, and 

Yang describes the process by which lesions in the nucleus of a cell, produced 

as a result of exposure to ionizing radiation, are either repaired or mis-

repaired by enzymatic mechanisms.* This model of repair can be formulated 

mathematically as a Markov process. In such a formulation a single cell is 

described by the probabilities that it will evolve at random times through 

various states of partial repair. The initial state for this probability 

process is the one that exists after the exposure to radiation but before the 

enzymatic repair mechanisms have had an effect. This state is described by an 

initial probability distribution for the number and location of lesions within 

a single nucleus. 

, Two types of repair processes are considered: a linear process (self

repair) that involves only one lesion, and a quadratic repair process (cross-

repair) that involves the interaction between a pair of lesions. A fraction ¢ 

of linear repairs are eurepairs and a fraction 1 - ¢ are misrepairs. 

Similarly, a fraction o of quadratic repairs are eurepairs and a fraction 

1 - o are misrepairs. 

At any time during the evolution of the nucleus, the possible states of 

the nucleus can be described by the number and location of unrepaired lesions 

and the number and location of eurepaired and misrepaired lesions. These 

states can be divided into three categories: survival states in which all the 

original lesions have been eurepaired, lethal states in which one or more 

*Radiation Biology and Cancer Research, (A. Meyn and R. Withers, eds.) 
pp. 195-230. New York, Raven Press, 1980. 
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misrepairs have occurred, and uncommitted states in which all lesions have not 

been repaired but no misrepairs have yet occurred. 

Initially, the nucleus is in an uncommitted state, and from there can 

evolve to another uncommitted state, a survival state, or a lethal state. Once 

the nucleus reaches a survival state it does not evolve further. From a lethal 

state the nucleus can evolve only to another lethal state. Let Un and Ln 

denote respectively the uncommitted and lethal states with n lesions, and let 

S0 denote the survival state. Then the possible steps in the evolution of a 

nucleus through three, two, one, and no lesions can be represented in a 

diagram as: 

u3 u2 ul so 

~ t ~ 
L2 Ll Lo 

The goal of the Markov formulation is a mathematical model of this evolutionary 

process and the calculation of the probability p s ( t) that the nucleus has 

evolved to a survival state at time t. 
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II. FORMULATION OF THE MARKOV MODEL 

Lesions are produced near the track of an ionizing particle through a 

nucleus. On the other hand, X rays produce lesions whose locations in the 

nucleus are not correlated with each other. In this section a Markov model 

will be formulated for the case of ionizing particles; the case of X rays will 

be treated in the next section. 

The nitial State 

Let m denote the number of tracks through a particular nucleus; the value 

of m will vary from nucleus to nucleus. Let W denote the average value of m 

for all the nuclei; W is proportional to the dose 0 of radiation. The number 

m has a Poisson distribution with mean W, which shall be denoted by PP(m;W): 

Pp(m;W) = ~ (W)m e-W m. 

Let k; be the initial number of lesions along the ith track through a 

particular nucleus, and let V be the average number of lesions per track for 

all nuclei and tracks. Then k; has a probability distribution P
0

(k;) 

that depends on the shape and dimensions of the nucleus, the LET of the 

particles, and possibly other factors, but is independent of the dose of the 

radiation and of the number of lesions on the other tracks. P
0

(ki) is a 

Poisson distribution for one simple case, a nucleus with uniform thickness 

parallel to the beam of particles. 

The iniiial state of the nucleus is described by the number of lesions on 

each of them tracks: k1, k2, ... km. 

Subsequent States 

Let n. denote the number of unrepaired lesions remaining on the ith track 
l 

at time t, and let x denote the number of misrepairs that have occurred. The 

state of the nucleus at time t is adequately described by: 
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Three kinds of repairs can occur: self-repair, cross-repair between two 

lesions on the same track, and cross-repair between two lesions on different 

tracks. Each of these repairs corresponds to a different change in the state 

of the nucleus. A self-repair on track i is a transition between the states: 

where x' = x for eurepair and x' = x + 1 for misrepair. A cross-repair on 

track i is a transition between the states: 

( n 1 • • • n i • • . x) + ( n 1 • • . n i -2 • • • x ' ) 

where n; changes by two since two lesions are repaired in one cross-repair. 

A cross-repair between lesions on tracks i and j is a transition between the 

states: 

Transition Rates 

n .-1 • . • X 1 
) 

J 

For any time interval (t, t + At) there exist probabilities for self-repair 

and cross-repair of the various lesions. If the nucleus is in a state j, then 

we assume the probability that it will evolve to a state k in the time interval 

At depends only on these states and not on the past history that led to the 

nucleus being in state j at time t. The transition rate is defined in terms 

of the probability Pjk(At) that the nucleus will evolve from state j to state 

k in the interval At. The transition rate is: 
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cjk = 6t~o 
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The transition rate cjk is an average value for all possible locations of the 

lesions along the tracks and for all possible locations of the tracks within 

the nucleus. It is also assumed that the probability of two repairs in the 

interval 6t, divided by 4t, goes to zero as 6t ~ 0. Thus, the only non-zero 

transition rates are for the three transitions previously described, each of 

which involves only a single repair. Finally, it is assumed that these 

transition rates are independent of time. 

Let A denote the transition rate for the self-repair of one lesion, let K* 

denote the transition rate for the cross-repair of one pair of lesions on the 

same track, and let ~* denote the transition rate for the cross-repair of one 

pair of lesions on one pair of tracks. Since there are ni lesions on track 

i, the tran$ition rate for self-repairs on track i is An 1• Since the number 

of distinct pairs of lesions on track i is ni(ni-1)/2, the transition rate 

for cross-repair on track i is K*n;(n;-1)/2. Finally, since the number of 

pairs of lesions on tracks i and j is ninj, the transition rate for cross

repair between tracks i and j is u*ni"j· Let K = K*/2 and u = u*/2, then 

the total transition rates for all tracks for self-repair, intra, and between-

track cross-repairs are: 

A r n. 
i 1 

Kk n.(n.-1) i 1 1 

and 

u E r n.n. 
j~i 

1 J 
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respectively. The last rate can be expressed alternatively as: 

2 u ~ ~ n.n.- u ~ n. 
. • 1 J . 1 
1 J 1 

Note that the transition rates defined here depend on the actual number of 

lesions in a particular nucleus and not on the average number of lesions for 

all nuclei. 

The transition rates K and u are products of two factors: an enzymatic 

repair rate and a probability that the two lesions are close enough to interact 

during the repair. This probability is larger for two lesions on the same 

track than for lesions on different tracks, that is, lesions on the same track 

are closer together on the average. Therefore, the transition rate for cross 

repairs on the same track should be greater than that for cross repairs on 

different tracks, that is, K ~ u ~ 0. Define 9 to be the ratio u/K, then 9 

must lie in the range 0 ~ 9 ~ 1. The limiting case, K = u, means that two 

lesions anywhere in the nucleus are as likely to interact as if they were on 

the same track. The other limit, u = 0, means that the maximum distance for 

interaction is so small that lesions on different tracks have effectively zero 

probability of interacting. 

The Basic System of Differential Equations 

The nucleus initially has no misrepairs. In order to reach a survival 

state, the nucleus must evolve only through states with no misrepairs. The 

probability of evolving through these states is described by a system of 

coupled differential equations. These equations follow from the three transi-

tion rates previously defined and the fractions ~ and o of linear and quadratic 

repairs that are eurepair. Let P(n1, n2 ... nm, tim) denote the probability 

that at timet the nucleus is in the state (n1, n2 ... nm, x) with x = o, given . 
that there are m tracks through the nucleus. Let P denote aP/at, then: 
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-[A z n. + KZ n.(n.-1) + ~ z z n.n.] P(n1 ... nm~ tim) 
1 1 1 ·r 1 J 

J t=1 

There is one such differential equation for the probability of each state, 

that is~ for each set of numbers n1, n2 nm. The first term on the right 

hand side represents transitions into the state n1 n; •.. nm, 0 by 

self-repair from the state n1 n.+l ... n , 0. The second term represents 
1 m 

transitions into the state n1 ni ... nm, 0 by intratrack cross repair from 

the state n1 
the state n1 

ni+2 •.• nm, 0. The third term represents transitions into 

n. • • • n . 
1 J 

state n 
1
. • • • n . + 1 . . . n . + 1 

1 J 

nm, 0 between-track cross repair from the 

nm, 0. The fourth term represents 

transitions out of the state n1 ... ni 

and between-track cross repairs. 

nm, 0 by self-repair and intratrack 

The differential equation couples the probabilities of numerous states. 

The first term on the right hand side involves m states, the second term 

involves m more states, the third term involves m(m - 1)/2 other states, and 

the left hand side and the fourth term on the right hand side involve only one 

state. For the case that all cross repair is misrepair, o = 0, the second and 

third terms on the right hand side drop out, which greatly simplifies the 

system of equations. 

Since the initial number of lesions on one track is independent of the 

numbers on the other tracks~ the initial probability P(n1 ... nm, tim) with 

t = 0 is the product of the probabilities for the individual tracks. 
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P(n1 ... n, Ojm) = P (n 1) •.• P (n ) m o o m 

These probabilities are the initial conditions for the system of differential 

equations. 

Probability of Survival 

P(O ••• 0, tim) is the probability that the nucleus has reached the 

survival state n1 = 0 ••• nm = 0, x = 0 at timet, given that there are m 

tracks. Let Ps(t) be the probability that the nucleus has reached a survival 

state at timet, averaged over all possibilities for the number of tracks. 

Since Pp(m;W) is the probability that there are m tracks, this average is: 

00 

Finally, letS denote the probability that the nucleus ultimately will reach a 

survival state, given a time interval sufficiently long so that the repair 

process has been completed; then S = Ps(~). 

These are all of the elements of the Markov problem. Pp(m;W), the 

distribution for the number of tracks, is a known function of the dose. 

P0 (ki), the distribution for the initial number of lesions along a track, 

is related to the average number of lesions per unit length of track and the 

shape and dimensions of the nucleus. Given P0 (k;), the differential equa

tions for P(n1 .•. nm, tfm) could, in principle, be solved as a function 

of the three transition rate parameters; \, K, and~· Finally, the average of 

P(O ••. 0, oojm) over m completes the calculation for the probability of 

ultimate survival S as a function of dose and the various parameters. 
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III. MARKOV MODEL FOR THE CASE OF X RAYS 

In the case of X rays the lesions are not located along a track; they are 

distributed randomly throughout the nucleus. This simplifies both the notation 

and the basic system of differential equations. 

Let k denote the initial number of lesions in a particular nucleus, and let 

U denote the average number of lesions for all nuclei. Then U is proportional 

to the dose of radiation and k has a Poisson distribution with mean U: 

The initial state of the nucleus is described simply by the number k. 

Let N denote the number of unrepaired lesions remaining in the nucleus at 

time t, and let x denote the number of misrepairs that have occurred. The 

state of the nucleus at time t is described by N,x. A self-repair is a 

transition between the states: 

(N,x) -+ (N-l,x') 

and a cross repair is a transition between the states: 

( N' X) -+ ( N-2. X I ) • 

Since there is no track structure, there is only one transition rate for 

cross repair, which shall be denoted by K. The total transition rates for 

self-repair and cross-repair are: AN and KN(N-1), respectively. 

Let P(N,t) denote the probability that at timet the nucleus is in the 

state N,x with x = 0. Then P(N,t) satisfies the system of equations: 
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• 
P(N, t) = WA(N+1) P(N+1, t) 

+ ~K(N+2)(N+1) P(N+2, t) 

-[AN+ KN(N-1)] P(N,t) 

The initial conditions for this system are: 

P(N, 0) = Pp (N;U) 

where Pp(N;U) is the Poisson distribution with mean U. The probability that 

the nucleus has reached the survival state at time t is: 

and the probability of ultimate survival isS= P
5

(oo). 
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IV. SOLUTIONS OF THE MARKOV MODEL 

The differential equations of the Markov model simplify for the case that 

all quadratic repair is misrepair, o = 0. All the solutions in this section 

are for that case. These solutions are: (1) an exact solution for the case 

of X rays, (2) an exact solution for the case of ionizing particles with~= K, 

(3) an exact solution for the case of ionizing particles with ~ = 0, and (4) an 

approximate solution for the case of ionizing particles with arbitrary values 

of ~· 

Solution 1. X Rays 

The differential equation for the case of X rays with o = 0 is: 

P(N,t) = ~A(N+l) P(N+l,t) -[AN+ KN(N- 1)] P(N,t) 

and the initial conditions are: 

Because the differential equation is linear in P, the sum of two or more 

solutions is also a solution. Consequently, the solution of the differential 

equation for the actual initial conditions can be written as a sum of 

solutions, each of which has a simpler initial condition. 

Let P(N,t!k,O) satisfy the differential equation with the simple initial 

condition that at t = 0 the probability is one that the nucleus has exactly k 

lesions, that is, 

P(N,O!k,O) = oNk 
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where ~Nk is the Kronecker delta, which equals one for N = k and zero 

otherwise. Then the sum of these solutions given by: 

00 

P(N,t) = ~ P(N,tjk,O) P(k,O) 

satisfies the differential equation with the initial conditions P(N,O), which 

are the actual initial conditions of the Markov model. P(N,t) constructed in 

this way is the desired solution of that model. 

The coupled system of differential equations can be solved for the simple 

initial conditions because the probability of states with more thank lesions 

remains zero for all time. The equation for P(k,tjk,O) is solved first because 

the only probability that is coupled to it, P(k+l,tlk,O), is a known quantity, 

namely zero. Once the solution for P(k,tlk,O) is known, the equation for 

P(k-l,tl k,O) can be solved, and from that solution, the equation for 

P(k-2,tl k,O) can be solved, and so on until finally the equation for P(O,tlk,O) 

is solved. 

Because the coefficients in the differential equation are constants, the 

solution P(N,tjk,O) is a sum of exponentials in time: 

~
. 

P(N,tlk,O) = A~ N 
J= ' 

where the exponents are: 

and 

-~k .t e -J 
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(¢A)k-N (N+1)(N+2) .•• (k-1)k 

and the factor (ak .-o,k .) is excluded from the denominator. 
-J -J 

The probability of ultimate survival is related to the value of P(N,t k,O) 

for N = 0 and t = oo. The above formulas give this quantity as: 

k 
P(O,ooJk,O) = Ak,O 

= A ( 2 A + 2 K) • .. ( A k + K k ( k - 1 ) ) 

= E (~:: + 1) (E + k- 1) 

where ~:: is defined to be A/~. 

The probability of ultimate survival is the value of P(N,t) for N = 0 and 

t = oo, which is a weighted sum of the P(O,oojk,O): 

P(O,oo) = ~ P(O,ooJk,O) P(k,O) 
k=O 

Sums that are similar to this one will occur for the other cases, so it is 

convenient to define a function Z that includes all these sums. We define: 
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The probability of ultimate survival is: 

S = P(O,oo) = Z(~,€,U) 

for the case of X rays. 

Solution 2. Ionizing Particles with ~ = K 

The differential equation for the case of ionizing particles with o = 0 is: 

tim)=~>. L: (n;+l) P(n 1 ... n;+l ••• nm, tim) 
i 

For ~ = Kthe ~ nT term drops out of the equation. The remaining terms 
1 

can be written as functions of the total number of lesions on all m tracks, 

N = ~ni· Define P(N, t!m) as the sum of the probabilities for all states 
1 

that have N total lesions: 

* 
P(N, t!m) = ~ P(n 1 ... nm, tim) 

nm 

where * means that the sum is restricted to those combinations of 

n1 ••• nm for which ~n; = N. 
1 

The initial conditions on P(N, tim) are: 

P(N,Oim) = 

If the initial distribution on each track, P
0
(k;), is Poisson with mean v, 

then the distribution for the total number of initial lesions, P(N, Olm), also 

will be Poisson with mean mV: 
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P(N, Ojm) = ~! (mV)N e-mV 

The differential equation for P(N, tjm) is obtained by summing terms in 

the differential equation for P(n1 ••• nm, tjm). The result is: 

. . 

P(N, tj m) = ¢x(N+l) P(N+l, t!m) - [xN + KN(N- l)]P(N, t]m) 

This equation is identical to that for X rays. In order to pursue this point, 

average P(N,tlm) over the number of tracks. Define P(N,t) by: 

00 

P{N,t) = ~ P(N,tjm) Pp(m;W) 

Then P(N,t) also satisfies the differential equation for X rays. However, 

the solutions for ionzing particles and for X rays are different because the 

initial conditions are different. For ionizing particles the initial 

distribution is: 

00 

P(N,O) = ~ P(N,Ojm) Pp(m;W) 
m=O 

which is not a Poisson distribution even though each P(N,Ojm) is a Poisson 

distribution. P(N,O) for ionizing particles has mean WV and variance WV + wv2. 

This is larger than the variance of a Poisson distribution by WV2. The 

reason is that ionizing particles tend to produce lesions in bunches, V lesions 

on the average for each particle passing through the nucleus, rather than one 

at a time as in the case of X rays. 

However, the solution for X rays is a limiting case of that for ionizing 

particles with ~ = K. The solution for X rays is the limit as V ~ 0 and W ~ oo 
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such that the product WV remains fixed, WV = U. When V ~ 0, the ratio of the 

probability of more than one lesion per track divided by the probability of 

exactly one lesion per track goes to zero, so lesions do not tend to occur in 

bunches. 

For the general case of finite V, the initial distribution for P(N,t) is a 

complicated function, so it is more convenient to calculate P(N,tlm), whose 

initial distribution is Poisson, and then average this over m to get P(N,t). 

The method of solution exactly follows the case of X rays. P(N,tjm) is written 

as a sum of solutions that have the simple initial conditions: 

00 

P ( N , t I m ) = k~ P ( N , t lk , 0 ) P ( k , 0 I m ) 

where P(N,tfk,O) is the solution for the case of X rays. The probability of 

ultimate survival given that there are m tracks is: 

00 

P ( 0, oo I m) = L P ( 0, oo I k , 0 ) P ( k , 0 I m) = Z ( q) , e: , mV ) 
k=O . 

since P(k,Ojm) is a Poisson distribution with mean mV. Finally, the proba

bility of ultimate survival, averaged over the number of tracks is: 

00 00 

""' I ""' L wm e-W S = LJ P(O,oo m) Pp(m;W) = LJ 1 Z(Q),e:,mV) 
m::::O m=O m · 

for the case of ionizing particles with~= K. 

Solution 3. Ionizi Particles with = 0 

For ~ = 0 the between-track cross-repair term drops out of the differential 

equation. Initially there is no correlation between n1 and nj. For~ = o 
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there is no coupling between them in the differential equation, therefore they 

remain uncorrelated for all time. Thus, P(n1 ... nm,tlm) factors: 

As a result, the differential equation separates into m identical equations. 

Since there is no difference between any of the tracks, the subscripts will be 

dropped and n will denote the number of lesions on any one of them. The 

differential equation for P(n,t) is: 

P(n,t) = ¢;~.(n+1) P(n+l,t) - [;~.n + Kn(n-1)] P(n,t) 

This is the same as the equation for X rays. The initial condition for this 

case is that P(n,O) is a Poisson distribution with mean V: 

The method of solution again follows the case of X rays. P(n,t) is written as: 

00 

P(n,t) L P(n,tJk,O) P(n,O) 
k=O 

where P(n, tl k, 0) is the solution for the case of X rays. Consequently, 

00 

P(O,oo) :::: L P(O,ooj k,O) P(n,O) :::: Z(¢,£,V) 
k=O 

This is the probability that one track ultimately evolves to the state of total 

eurepair. The probability of ultimate survival given that there are m tracks 

is the probability that m independent tracks reach this state, namely 

P(n1 ... nm, tJ m) for n1 = 0, ... nm = 0, and t = oo, This is 
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P(O ••• O,ooi m) = P{O,oo) ••• P(O,oo) = [Z(~,€,V)]m 

Finally, the probability of ultimate survival, averaged over the number of 

tracks is: 

The final sum was possible in closed form because for this case Z is not a 

function of m. The formula for S shows that it has a purely exponential 

dependence on the mean number of tracks per nucleus, W, and hence a purely 

exponential dependence on the dose of radiation for the case of ionizing 

particles with ~ = 0, that is, when between-track cross-repair is negligible. 

Solution 4. Ionizing Particles with Arbitrary ~ 

The value of Solutions (2) and (3) is that the solutions for those cases 

bound the solution for arbitrary values of ~ in the range 0 ~ ~ < K. 

For arbitrary~ an approximate solution similar to solution (2) can be 

obtained by approximating the rn? term in the differential equation for 
i 1 

P ( n1 ••• nm,tlm) by a function of N. This function must be chosen so that 

the cross-repair terms are zero for N = 1. It can be 

had a Poisson distribution (which initially it does), 

of fn~ for those combinations of n1···nm for which ~ni 

E [ f n 
2~ = N + N ( N-1 ) I m . 1 1 l= 

1 

shown that, if each ni 

then the average value 

= N is: 

If this average value is used for the ~n~ term, then all terms in the 
1 

differential equation for P(n1 .•• nm,tlm) are functions of Nand' not the 

individual ni· Consequently, an equation an be found for P(N,tlm) as in 

Solution (2). The result is: 
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P(N,tjm) = ~\(N+1) P(N+l,tlm)- [\N + (u + (K-u)/m)N(N-1)] P(N,tjm)] 

The initial conditions are the same as in Solution (2): 

P(N,Ojm) = Pp(N;mV) 

a Poisson distribution with mean mV. The solution is found by the same method: 

00 

P(N,tlm) = ~ P(N,tik,O) P(k,O!m) 
t;6 

However; for this case 

k k I ~ r P(O,oo k,O) = y(y + l) ... (y + k- 1) 

where 

\ m€ 
1 = u + (K- u)/m = me + 1 - e 

because the cross-repair term has a different coefficient than in Solution (2). 

The probability of ultimate survival, given that there are m tracks is: 

00 

P(O,oojm) = ~ P(O,oojk,O) P(k,Ojm) = Z(~,y,mV) 
K=O 

Finally, the probability of ultimate survival, averaged over the number of 

tracks is: 
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00 00 

s = L P(O,oolm) Pp(m;W) = L _1, wm e-W Z(¢l,y,mV) 
m=O m=O m. 

for the case of ionizing particles with arbitrary values of ~ in the range 

0 ~ ~ ~ K. For~= K this formula reduces to that for Solution (2). 

Summary of Solutions 

1. For X rays the probability of ultimate survival, S, is: 

S = Z(¢l,e:,U). 

2. For ionizing particles with ~ = K: 

S = ~ Pp(m;W) Z(¢l,e:,mV) 
m 

3. For ionizing particles with u = 0: 

s = e-[1-Z(¢>,e:,V)]W 

4. For ionizing particles with arbitrary u, approximately: 

S = ~ Pp(m;W) Z(¢>,y,mV) 
m 

where Pp(m;W) is the Poisson distribution with mean W. 
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V. PROPERTIES OF THE SOLUTIONS 

Limiting Cases 

The expressions for the probability of ultimate survival, S, reduce to 

simple forms for various limiting cases. Some of these limiting cases involve 

extreme values of parameters, which would not be expected to describe an actual 

cell, however, they are useful as bounds on the possible range of values for 

S. In each case these limiting expressons agree with direct calculations of 

the probability of ultimate survival, thereby providing checks on the solutions 

(1) through (4) of Section IV. 

~ = 0. For this case the probability of ultimate survival for the case of 

X rays reduces to: 

S = Z(o,e:,U) = e -U 

which is independent of e:. For ionizing particles S reduces to: 

where a= e-V, and is independent of both e: and e. Solutions (2), (3), and 

(4) of Section IV each reduce to this expression. 

These limiting expressions can be explained as follows. Linear repair 

occurs for ¢ = o, but none of it is eurepair. Therefore, for the case of 

X rays, the probability of ultimate survival equals the probability that 

initially a particular nucleus had no lesions, given that the average number 

of lesions per nucleus is U. This probability is e-U, so the expression for 

Z(~,e:,U) reduces to the correct value in this limit. 
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For the case of ionizing particles with ~; 0, the probability of ultimate 

survival equals the probability that initially each track of a particular 

nucleus had no lesions, given that for the nuclei as a whole the average number 

of lesion per track is V and the average number of tracks per nucleus is W. 

The probability that a particular track initially had no lesions is e-V, and 

the same probability form independent tracks is e-mV. The probability that 

a nucleus has exactly m tracks through it is wm e-W/m!. The probability 

that a particular nucleus initially had no lesions is the product of these two 

factors summed over all values form, which is precisely the expression for S 

given above for this case. 

The expressions for S do not simplify for ~ = 1. 

It can be shown that aZ/a~ > 0 and aS/a~ > 0. Consequently, the values of 

S corresponding to any increasing sequence of values of ~. and to fixed values 

of the other parameters, is an increasing sequence, that is, for 

0 < e << 1. For this case the probability of ultimate survival for the 

case of of X rays, given by Solution (1) of Section IV, reduces to: 

s = Z(~.o.u) = (1 + ~u)e-u, 

and that for ionizing particles with ~ = 0, given by Solution (3), reduces to: 
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1 m W m mV = e-(1-b)W S = L --
1 

W e- (1+~V) e-
m m. 

where 

and that for ionizing particles with ~ ~ 0, given by Solutions (2) and (4), 

reduces to: 

where again a is e-V. 

In order to understand these limiting expressions consider first the case 

of X rays with € << 1. The probability of ultimate survival equals the 

probability that initially a nucleus had no lesions, plus the probability that 

it had one lesion that was eurepaired, plus the probability that it had two 

lesions that were eurepaired, plus etc. For € << 1 the probability that two 

lesions will linear repair is negligible compared to the probability that they 

will cross repair, since A<< K· However, one lesion by itself can not cross 

repair; it must eventually either linearly eurepair with probability~ or 

linearly misrepair with probability (1-~), although for A<< K this linear 

repair will occur much more slowly than cross-repair in other nuclei that have 

two or more lesions. The probability that initially a nucleus had no lesions 

is e-U, and the probability that it had one lesion that was eurepaired is 

~ue-U, therefore, for e << 1, S is the sum of these two terms, which is the 

expression given above for this case. 
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If € were exactly zero, then linear repair would never occur and S would 

equal e-U. However, this exceptional case does not give a useful bound for 

the solutions of Section IV, so it will not be considered further. 

For the case of ionizing particles with ~ = 0 and € << 1, the quantity b 

is the probability that a track initially had no lesions or had one lesion that 

was eurepaired. Then bm is the same probbility form independent tracks, and 

the expression for S given above is bm averaged over all possible values form. 

The case of ionizing particles with ~ ~ 0 differs from the last case in 

that between-track cross repair will very likely occur instead of linear 

repair, if two tracks in a nucleus each have one lesion. 

€ = oo. For this case the probability of ultimate survival for X rays 

reduces to: 

S "" Z(~,oo,U) 

and those for ionizing particles, Solutions (2), (3), and (4) each reduce to: 

S 1 Wm -m -(1-e)mV -(1-c)W =l:-1 e e =e 
m m. 

where 

c = e -(1-~)V 

which is independent of e. 

For € = oo there is no quadratic repair. For the case of X rays, the 

probability that initially a nucleus had exactly k lesions is uk e-U/k!, 

and the probability that all k of them ultimately were eurepaired is ¢k. The 



25 

probability that all the lesions in the nucleus were eurepaired is the product 

of these two factors summed over all values fork, which is the expression for 

S given above for this case. 

For the case of ionizing particles withE =oo, the quantity cis the 

probability that all the lesions on one track were eurepaired, and em is the 

same probability form tracks. The probability that all the lesions in the 

nucleus were eurepaired is em averaged over all values form, which is the 

expression for S given above for this case. 

It can be shown that aZ/aE ~ 0 and aS/aE ~ 0, and that they equal zero only 

for certain limiting cases. Consequently, the values of S corresponding to any 

increasing sequence of values of E, and to fixed values of the other 

parameters, is an increasing sequence, that is, for 0 < Eo << 1, and for 

EO < E1 < E2 • • • < oo, 

This ordering is shown in Figures 1 and 2, which display the graphs of S vs. U 

for the case of X rays with ~ = 1.0 and 0.5. Note that for each value of U the 

range of values for S decreases as ~ decreases. 

~ = 0 and~= K. The expressions for these limiting cases for ionizing 

particles are the exact Solutions (3) for e = 0 and (2) for e = 1. It can be 

shown that aS/ae ~ 0, and equals zero only for certain limiting cases. Con

sequently, the values of S corresponding to any increasing sequence of values 

of e, and to fixed values of the other parameters, is a decreasing sequence, 

that is, for 0 < e1 < e2 ... < 1, 
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Solutions (2) and (3) are shown in Figure 3, which displays the graphs of S 

vs. U for the case ¢ = 1, c = 1, and V = 1, where U is the average number of 

initial lesions per nucleus, U = VW. 

The approximate Solution (4) equals Solution (2) for 9 = 1, however, for 

9 = 0 the approximate solution is less than Solution (3). Thus, for all 9 in 

the range 0 ~ 9 ~ 1, the approximate solutions also are bounded by the exact 

Solutions (2) and (3). 

0 oo, For the case of ionized particles the probability of ultimate 

survival for different values of V also are ordered, where V is the average 

number of initial lesions per track. One can show that aZ/aV ~ 0 and 

aS/aV ~ 0, and that they equal zero only for the limiting case c = oo and¢= 1, 

that is for no misrepair. Consequently, the values of S corresponding to any 

increasing sequence of values of V, and to fixed values of the other parameters 

(specifically: ¢, E, 9, and W), is a decreasing sequence, that is, for 

o < v1 < v2 ••• , 

This ordering is as expected; with more lesions per track and the same number 

of tracks fewer cells survive. 

Next consider the variation in S when V is varied and U = VW is fixed, 

where U is the average number of initial lesions per nucleus. This shows the 

pure effect of the track structure on survival, that is, the effect of the same 

total number of lesions on the average, but distributed in larger or smaller 

bunches per track. For fixed U, aS/eV can be positive or negative. In 
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general, aS/aV < 0 for U less than some critical value, Ucrit' which is a 

function of¢, E, a, and V; and for U > Ucrit the inequality reverses: 

aS/aV > 0. Consequently, the ordering of the values of S for a sequence of 

values of V reverses; that is, in the region U > Ucrit the graphs of S vs. U 

for larger values of V (higher LET) lie above those for smaller values of V 

(lower LET). This order is shown in Figure 4, which displays the graphs of S 

vs. U for the case ¢ = 1, E = 1, and v = K. The graph for V = 0 crosses that 

for V = 1 near U = 1.5. For fixed U more cells survive for larger V than for 

small V; one reason is that the probability that the nucleus has no tracks 

through it is e-U/V, which is larger for larger V. 

Finally, consider the variation in S when V is varied for fixed dose. Let 

A denote the area of the projection of the nucleus in the plane perpendicular 

to the particle beam, and let F denote the flux of radiation integrated over 

time and expressed as the number of particles per unit area. Then the average 

number of tracks through the nucleus, W, is: 

W = AF. 

Let D denote the radiation absorbed dose expressed as the energy absorbed per 

unit mass, let p denote the density of the absorbing material, and let LET 

denote the energy transfer per unit length; then 

D = F LET/p. 

Combining these two relations gives 

W = pAD/LET, 
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and therefore, 

U = pVAD/LET. 

If V did not change with LET, then aW/aV = 0 and since aZ/aV < 0, it follows 

that aS/aV would be negative for this case. On the other hand, if V was 

directly proportional to LET, fixed dose would be equivalent to fixed U, which 

gives a reverse ordering of survival curves for large U. Since experiments 

(Tobias et al., loc. cit.) show that survival decreases with increasing LET, 

this model of repair-misrepair implies that V must increase much less slowly 

with LET than in direct proportion. Assuming a particular functional 

dependence of V on LET, the graphs of survival vs. dose could be calculated and 

the model tested thereby. A numerical investigation of this will be pursued 

in a subsequent study. 
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LIST OF SYMBOLS 

In the order they appeared in the text: 

m 

v 
n. 

1 

X 

K 

fraction of linear repairs that are eurepairs 

fraction of quadratic repairs that are eurepairs 

number of tracks through a particular nucleus 

average value of m for all the nuclei 

Poisson distribution 

initial number of lesions along the ith track 

through a particular nucleus 

average value of k; for all nuclei and tracks 

number of unrepaired lesions remaining at time t on 

the i th track 

total number of misrepairs at time t in a particular 

nucleus 

transition rate from state j to state k of a nucleus 

transition rate for the self-repair of one lesion 

average transition rate for the cross-repair of one 

pair of lesions on the same track 

average transition rate for the cross-repair of one 

pair of lesions on one pair of tracks 

K*/2 

probability at time t that a particular 

nucleus has n;···nm unrepaired lesions and 

no misrepaired lesions, given that there are m 

tracks through the nucleus 



P(O ••• o,tlm) 

s 

k 

u 

N 

p (co) 
s 

Z(¢,s,U) 

y 

A 

F 

D 
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probability at time t that a particular nucleus has 

reached a survival state (no unrepaired or 

misrepaired lesions), given that there are m 

tracks through the nucleus 

probability at time t that a particular nucleus has 

reached a survival state, averaged over all 

possibilities for the number of tracks 

probability that a nucleus will ultimately reach a 

survival state 

initial number of lesions in a particular nucleus 

average value of k for all nuclei (U = VW in the case 

of ionized particles) 

number of unrepaired lesions remaining at time t in a 

particular nucleus (N= f ni in the case of ionized 

particles) 

function defined on page 13 (probability of ultimate 

survival in the case of X rays) 

ratio of linear and cross-repair coefficients defined 

on page 19 

cross-sectional area of the nucleus 

flux of radiation integrated over time 

radiation absorbed dose 
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